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Abstract —The torced vibration of a liquid-filled, porous. elastic half-space produced by rotatory
and horizontal oscillations of a circular surface footing 1s reduced to the solutions of Fredholm
integral equations of the second kind. The circular footing is modeled by a pervious, weightless.
rigid disk of negligible thickness. For a medium consisting of dense sand saturated by ground water.
numerical solutions of the integral equations are obtained to reveal the variations of the impedance
functions with the exciting frequency and the material parameters (permeability and Poisson’s
ratio). Comparison with the response of the dry soil is also discussed. In the rocking oscillation
case. the presence of the ground water i1s found to influence the magnitude and shape of the
impedance functions and may need to be considered in applicable soil structure interaction prob-
lems. In the horizontal vibration case. however, marginal influence of the pore water is found to
affect the response of the medium.

I. INTRODUCTION

The dynamic force--displacement relationship (ratio of applied force or couple/linear or
angular displacement) plays a central role in determining the response of surface structures
to dynamic loadings. in particular seismic excitation and machine vibration. For an elastic
half-space indented by a rigid circular disk, an ever-increasing amount of research work
has been devoted to the topic and comprehensive reviews are available in Gladwell (1968)
and Luco and Westmann (1971). The fruitful method of solution which has evolved from
this work is integral transform formulation of the problem in terms of auxiliary functions
governed by Fredholm integral equations of the second kind. The integral equations are
solved either numerically or by perturbation to determine the desired force-displacement
relationship and other quantities of interest. When the half-space consists of a porous
clastic solid filled with liquid, analogous solutions can be developed to determine the
response (o forced vibrations. Due to dissipation of the pore fluid, there is a coupling
between the states of stress in the solid and fluid portions of the medium which could
impact the response from the practical viewpoint. The response to normal excitation of the
saturated medium by a circular disk has been determined by Kassir ef al. (1989). The aim
of this investigation is to determine the corresponding responses to rocking and horizontal
excitations. and to find out to what degree the responses are influenced by the presence of
the fluid. The steady-state responses of a square plate and a strip bearing on saturated
elastic medium have been discussed by Halpren and Christiano (1986) and Kassir and Xu
(1988).

Section 2 contains a briet summary of the equations governing the general propagation
of waves in the two-phase medium. These equations were first formulated by Biot (1962).
The set of equations governing the coupled dilatational and shear waves is given in Section
3. Section 4 contains a solution of the rocking excitation case (rotation about an axis
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parallel to the plane boundary) while the horizontal vibration case (translation parallel to
an axis in the plane boundary) is discussed in Section 5. For both cases numerical results
of the force-displacement relationships (stiffness and damping coefficients) are presented,
and discussions on the impact of the fluid on the impedance functions over a wide range of
values of the applied frequency are provided. For a medium consisting of dense sand
saturated by ground water, it can be concluded that the influence of ground water in the
frequency range of practical interest is important and, in the rocking oscillation case, needs
to be considered in determining the response of surface footings to dynamic loading,
especially earthquake loading.

2. BASIC EQUATIONS

Consider a pervious rigid circular disk of radius a undergoing rocking and horizontal
vibrations at the surface of a semi-infinite space consisting of a two-phase medium. The
disk is assumed to be weightless. In terms of cylindrical coordinates (r, 6, z) located at the
center of the disk with the z-axis pointing towards the medium, denote the displacement
components of the solid material by (u,. 4y, u.) and of the fluid part by (U,, Uy, U.). The
displacement components of the fluid relative to the solid, measured in terms of the volume
per unit area of the bulk material, are w, = f (U,—u)), j =r, 0, z, where f stands for the
porosity coefficient of the medium. The corresponding total (bulk) stresses are denoted by
T, b, j = r, 8, z and the pore pressure is denoted by p. With these notations the equations
governing the propagation of waves are
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for the bulk stresses, and
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for the flow of fluid. In eqns (1) and (2). p. p’ stand for the mass densities of the composite
solid—fluid parts, respectively. Also. k and y* are Darcy’s coefficient of permeability of the
medium and the unit weight of the fluid. A dot over a letter indicates differentiation with
respect to the time variable.

The pore pressure is given by the relation

p=2(—xe+e). 3
While the stress—strain relations assume the form

T, = 2uE, +re—a'e’ (4a)
Ty = Qe+~ re—ax'e’ (4b)

T.=2us. +ie—ox'e’ (4c)
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In eqns (3) and (4). 7 and u are Lame’s constants of the solid, and « and «" designate the
compressibilities of the solid and fluid portions. respectively. The dilatations in the solid
and fluid parts are denoted by e and ¢', i.c.
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The displacement equations of motion governing the propagation of waves in the
medium can be obtained from relations (1)—(5). The results are
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where N designates the dimensionless ratio N = p'p, K = %", (2u+4) and V., V, stand for
the velocities of the compressional and shear waves. respectively, given by

Vi=Qu+2) p. Vi=pup. (N

In eqns (6a-f), the rotations of an element of the solid skeleton have been denoted by Q,,
Q,, Q.. where

2Q, = ! ‘l“ - ‘i”" (8a)
roco o
20, = (8b)
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3. DILATATIONAL AND SHEAR WAVES

In order to determine the equations governing the propagation of the dilatational and
shear waves. it is convenient to use the following displacement representations (Wolf, 1985)
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Upon inserting eqns (10) and (11) in (7). the dilatational waves (P-waves) are found to be
governed by the solutions of the equations
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while the horizontal shear waves (SH-waves) are determined from

VIVIQ = Q+ NQ (14a)
. N.. .
NQ+ — Q'+ Q=0 (14b)
/ kp

and the vertical shear waves (SV-waves) from

VIV = ¥+ NV (15a)

) (15b)

vi s Y
N — -+
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4. ROCKING VIBRATIONS

For rocking vibrations (rotations about the y-axis, 1 = r sin (/) with constant amplitude,
dg, induced by harmonically varying moment. Me"”. applied to the circular disk, the
boundary conditions on - = 0 are:

p(r.0.0:n=1.(r.0.0:)=1,(+.0.0: =0, r=0, allf (16a)
u(r.0.0:1) = dgrcoste™, 0<r<a. allf (16b)
(r.8.0:0y=0, r=0, ally (16c)

An appropriate integral transform solution of eqns (13)-(15) is obtained by writing

>
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in which

n,=(s"—wH;)'*. Ren,20. Imn, >0, (18)

and H,. ., j=1, 2. 3. are known functions of the material properties and the applied
frequency and given in the Appendix. Moreover. in eqns (17a—d), J, denotes the Bessel
function of the first kind of order unity, and A4,(s).j = 1, 2, 3 and 4 are transform parameters
to be determined from the applicable boundary conditions. For convenience, the factor ¢
containing the frequency of excitations will be omitted from all applicable equations in the
remaining parts of the paper. The expressions of the displacements and stresses throughout
the medium are readily obtained by inserting eqns (17) and (18) into (4), (5), (9) and (10).
Boundary conditions (16a) are readily shown to imply that
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Ay(s) =71 4.(5)
Ai(s) =0
As(s) = 7, 4,(5) (19

in which y, and y, stand for the abbreviations

71 = —(a+ BV H(a+ Br)H3 (20a)
72 o= 2(n +y|n2)/(n§+s2). (20b)

With a view towards establishing the dual integral equations governing the remaining
unknown function, 4, (s), the following abbreviation is introduced

A(s) = Dy (@ )[(1+7)s5* =57 ny + VI = K)o HT (B — B2)/ 2V (a+ B2)14, (5),
@n

where D,(w, v) is an arbitrary function introduced for convenience and determined in the
following. Observing that

(A+2u)Qu) = V@2V3)
% (2p) = KV2/(2V?Y) (22)

it follows from applying boundary conditions (16b) and (16c) to the appropriate expressions
for the stresses and displacements that

J 5 "1+ F(s.an]A(s), (rs)ds = gr, r<a, (23a)

~

J " A, ) ds =0,  r>a, (23b)

where the kernel, F(s, »), is given by

_ 5(y28° —ny —ym)
Fs.w) = —————— - . . 3 -1
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(29)

Since in the static case the function F(s, w) must vanish, it follows upon expanding F(s, w)
for small values of w that

_ M) HI— (a+B)H]
HIH(B, - B)[VZ(I—a2K)VEi-1]

D, (s.v) (25)

Note that in the one-phase material, D, reduces to D, = —2(1 —v). Also, it is readily shown
that the function F(s, w) is bounded for large values of the parameters. The solution of the
set of equations (23a, b) is readily obtained by writing

A(s) = ngzJ ’ Q(1) sin (st) dt, (26)

I/

where the auxiliary function, Q(r), satisfies the integral equation
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2 «

0.0+ ;J L1000 du = 215 @7
O

with

~

L{t.u) = 7 F(s, w) sin (su) sin (st) ds. (28)

Jo

The total moment under the indentor is given by

u

r’t.dr
0

M= — ( cos (8) do
{
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which may be shown upon using eqns (4c), (9). (10). (17). (21) and (26) to reduce to

/‘u

M= —~8u:D; | vQ(r)dy. (29)

Al

Since in the one-phase static case. D, = —2(1 —v) and Q(v) = 2(dg_, )y, it follows that the
ratio of the overturning moments is

,‘(

MM, = —[3(1—v)/(a' D,)] J YO() dv(x/dr

stat

). (30)

0
The impedance functions. m, and m,. given by the following equation
(MM )e ™™ =(m, +im,)(3a/dx,). (D

are computed for a wide range of values of the dimensionless frequency parameter,
w = aw/V,. A medium modeling water-saturated sand with the following properties is
assumed to occupy the half-space: x=10. 2 =2939%x10° psi (2026 MPa),
p=0.01937x10"21bs*in * (2070 kg m %), p' = 0.0327x 10" b s* in~* (350 kg m ),
f=0.35 and the confined modulus £, =(1 —v) /v = 14 x 10° psi (96.5 MPa). In order to
explore the influence of permeability on the impedance functions, three values of the non-
dimensional permeability coefficient. k" = (V/ag)k, namely. k" = 0.001, 0.01 and 1.0, are
used in the numerical evaluations. Here, g 1s the gravitational acceleration.

Figure 1 shows the variation of the impedance functions, m, and m,, with & for
k"= 1.0 and v = 1/3. The top curve represents the real part (m,) of the moment-angular
displacement relationship (stiffness) while the lower curve represents the imaginary part
normalized by & (damping coefficient). In order to compare the results with the dry
material, the corresponding results from the work of Luco and Westmann (1971) are
shown as well. As might be expected, the response of the two-phase medium with k" = 1.0
(relatively high permeability coefficient) is similar to that of the dry solid. The stiffness of
the saturated medium is reduced for & > 5, while there is no change in the damping
coefficient over the range of the frequency parameter.

Figure 2 reveals the influence of permeability on the rocking impedance. For & > 3,
the stiffness is significantly more sensitive to the values of the permeability coefficient. The
values of the damping coeflicient are increased with lower values of k”. A typical saturated
sand medium is represented by k" = 0.01 and for such material, the influence of the pore
fluid on the impedance values is significant.

Figure 3 shows the influence of varying Poisson’s ratios on the response of a medium
with very small values of the permeability number (k" = 0.001).
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Fig. 1. Impedance variations with @ for v = 1/3 and &" = 1.0.

5. HORIZONTAL VIBRATIONS

When the indentor experiences in-plane horizontal translation parallel to the y-axis,

induced by a harmonically varying horizontal force, He'’, the appropriate boundary
conditions in the z = 0 plane are:

p(r,0,0) = t.(r.0,0) =0, r>0, all 6 (32a)
u,(r,08,0) = d,,cosb, 0<r<a, alld (32b)
uy(r.8,0) = —d,sin@, 0<r<a all@g (32¢)
7,.(r,0,0) = 1,.(r,0,0) =0, r>0, all 0. (324d)

In this case, the expressions in eqns (17a—d) are also used for the dilatational and
shear waves. However, the boundary conditions (32a) in conjunction with the appropriate

expressions for the pore pressure p and normal stress 7. developed from eqns (9), (10) and
(17) yield

A (s) =7, 4,(5)
A.(5) £ 0
Ai(8) = 73A4,(5) (33)
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Fig. 2. Influence of permeability on the rocking impedance (v = 0.25).

in which v, is defined in eqn (20) and y, is given by
2unystyy = 2u(nt +yin3) —wH(A+ oo Bi) —wH3y (A+ad'B,), (34)

where the same notations for n,and H,,j = 1, 2, 3, are used (see the Appendix). Introducing
the abbreviations

B\ (s) = Dy(w,v)[2n, + 27,0, — (”Zi +52)V3]5A1(5)
B;(s) = D1(w, v)[n35]4;(). (35)

where D, is an arbitrary function, it follows that eqns (9), (10), (17) and (33) yield the
following expressions for the displacements u, and u, across the z = 0 plane

x

u(r.0,0) = ;J {<[I+G ()1B, () +[1 + G (9)]

N

2(5)>J0("S)

\, (14 G, (5)]B,(5) +[1 +Gy(s)] = (s)>J2(”)} scos  (36a)

2
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Fig. 3. Influence of Poisson’s ratio on the rocking impedance (k" = 0.001).

L : Ba(s)\ Jo(rs)
u(r.0.0) = 5| 40—+ G 3) ~ [1+ G 9]
“Jo 2
- </ = [+ G (H]B)+ 1+ G2 (9] %(S)B%@} dssinf.  (36b)
!  /

Similarly. the expressions for the shearing stresses are obtained by using eqns (4), (9), (17)
and (33). The results for z = 0 are

T,.(r.6.0) :5—% J = B, (s) = B-(s)]Jo(rs)+[B,(5) — B,(5)]/,(rs) dscos @ (37a)
<« Jo
[
r,,:(r.().O)zng B, () + Bo($))Ja(r5) + (B (5) — By(8)]/a(rs)} dssin . (37b)
<« Jo

In eqns (36) and (37), J,. n = 0.2. are the Bessel functions of the first kind and order n, and
G, and G- stand for

"V(HH",' ~ni,'i)

G (s) = S (382)

D.[2n, +2n27, ~ (”% +Sl)}'3]

Gals) = 1. (38b)

A4

where D,(wm. v) is chosen to ensure that G, — 0 as » — 0. In this manner it follows that
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D,(w,v) = K(ozK-l)( Ve >|:a2K2+(l—aK)<l- Ve )}1 (39)
e 212 V)|

S

For the one-phase elastic material, D, reduces to D, = 1 —v. Also, G, and G, are bounded
for large values of s.

Equations (36) and (37), in conjunction with boundary conditions (32b—d), yield the
following equations for the determination of the unknown functions B,(s) and B,(s):
For0 <r<aandallg:

J’C [D.(1+G))B (s)+ (1 +G>)B,(5)] JL(grs)ds =2Ddy (40a)
o K

x J,(rs)
J [D:(14+G)B(s)— (1 +G,)B,(s)] . ds=0 (40b)
o )

and forr > a, all 6:

Ji [B(s)+ B.(s)]Jy(rs)ds =0 (41a)

0

Jx [B,(s)—B,(s)]J.(rs)ds = 0. (41b)

0

Dual integral equations similar to eqns (40) and (41) were considered by Gladwell (1969)
and reduced to coupled Fredholm integral equations of the second kind. The real and
imaginary parts of the impedance were obtained by expanding the kernels and the unknown
functions of the integral equations in power series valid for small values of the wave number.
The impedances for large values of the wave number were not obtained. The same equations
were also considered by Luco and Westmann (1971), and Bielak (1971) and reduced to
coupled integral equations amenable to numerical treatment. Numerical values of the
impedance components were then obtained for a wide range of values of the applied
frequency. A procedure similar to that used by Bielak (1971) is applied here.
With a view towards computing numerical values of the impedance functions, let

B (5)=s J.a R, (1) cos (st) dt (42a)

B,(s) = (é)[:sin (as)+J“(st)32Rz(t)J; 2 (s1) dt] Jw R ()ds (42b)

1] 0

provided that the limiting values of R,(f) and R,(t) as t — 0 are finite. In eqns (42a, b), /3,
is the Bessel function of the first kind of order 3/2 and R, and R, are auxiliary functions.
Upon performing an integration by parts on expressions (42), it may be shown that
boundary conditions (41a,b) are automatically satisfied. In order to establish the Fredholm
equations, rewrite eqn (40a) in the form

) J - 0
sz B, (s) o(rs) ds = 2D25H_D2J G;(S)Bl(s)J_ (Srs)

0 s 0

ds

Jo(rs)
s

«jj [(1+G,(s)]B,(s) ds.  (43)
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Inserting expressions (42a, b) into (43) leads to an integral equation of Abel’s type whose
solution yields

oo [mye
R (n+ R,<_1-)K”<J:1>d}':"”(n) K’)

b aD,

Al \

PANENNE ¥ N
-+ <n> | G- (5) Sln(fl\,) cos (s1) ds— le,(l)
8] RS
+ ' R.(v)dv+| vR.(»K,:(y. 1) dy:| J R,(»)dy, (44a)
v/ Jo .
where
5
Koy =21 6 sin (s7) cos (sy) ds (44b)
o0
5o .
Kialrnn) = ' G:(“’COS(“")[MH B cos (sy)} ds. (44c)
T[ U L1

Similarly. when eqns (42a,b) are used in conjunction with eqn (40b), the following Fredholm
integral equation is obtained :

l 4 12 ~y
o {(Z) + R (1) + | YR (WK~ (r. 0 dy

0

+ j’ G, (5) iI}fm) [sm S cos (sl)} ds} J” R, (y)dy
0 '

st 0

] it a
= 7:1)3|:[ Rl(}")dy_Rl([)"i_J‘ Ri(V)Ky (), [)dy} (45a)

0 0

with
2 ( sin (sy In (st
K-y t) = - [ Gl(.\')[bm (5¥) cos(sy)}[sm (s0) —cos(st)}ds (45b)
T J, sy st
) 2 [ stn (s7)
Koy, 1) = - [ G, (x){ » —Cos (st)}cos (sy)ds. (45¢)

A simplified form of eqn (45) can be obtained as follows. First, eqn (44a) is integrated with
respect to the variable ¢, between limits (0. 7). and the resulting equation and eqn (44a) are
substituted in eqn (45a) to yield

Pa S 2N 12 ry : . :
Run)+ | Re()Kss (v rydy = (;) Gz(s)[sms(tét)—Cos(st)}sms(as)ds. (46)

v

( J!

Equations (44) and (46) determine the auxihiary functions R, (¢) and R,(¢) either numerically
or by approximation.

The horizontal force applied to the indentor, He'”, in the # = 0 direction has an
amplitude given by
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Are

H

i ‘ [~ 1. 0.0)cosO+1,.(r.0.0)sinG]rdrdf 47

Rl
which may be shown to simplify to

™

2nu
H= D. R, (vydy. (48)

Y

4

In the static (o — () one-phase material, G.(s) in eqn (38) vanishes and it is found that
R (1) =(@/m[(1 =v)/(2—v)]dy_ . R-(1) = 0. It follows that the expression in eqn (48) reduces
to

: x JPERN
How = (37 oo (49)

This is as far as the solution can be analytically developed. With a view towards determining
the influence of pore fluid on the response of the half-space, eqns (44) and (46) are
discretized by transforming them to a system of simultaneous, linear, algebraic equations
to yield the values of R () and R,(r), and numerical values of the ratio

Hy o _ ) Oy )
<H“m ) ¢ = (hl + l/l: ) <(5”\m) (50)

are determined. The same material propertics as those used in the rocking case are
considered.

The varniations of the functions A, and /. & with @ are shown in Figs 4-6. Figure 4
compares the horizontal impedance data for a two-phase medium (k" = 1.0) with the dry
medium obtained by Luco Westmann (1971). In the range & < 2.0. the magnitudes of these
functions are identical in both media. However. for > 2.0 there is about 20-25% variation
in the impedance values due to the presence of the pore fluid. Figure 5 shows the variations
of i, and A,/@® with &’. It is clear that the horizontal impedance functions are insensitive to
variations in the permeability coefficient. Similar conclusions were reached by Halpren and
Christiano (1986) for a square plate supported by a porous elastic solid. Figure 6 reveals
the influence of varying Poisson’s ratio on the impedance functions (k" = 0.001). Increasing
the values of Poisson’s ratio lowers the magnitude of the stiffness and damping coefficient
of the medium.

6. DISCUSSION AND CONCLUSIONS

Mixed-boundary value problems were formulated to determine the response of a
pervious circular footing supported at the surface of a two-phase elastic medium and excited
by a harmonically varying overturning moment and a horizontal force. By using the integral
transform technique and auxiliary functions, the problems were reduced to Fredholm
integral equations of the second kind which, in turn. were solved numerically to generate the
impedance functions (stiffness and damping coeflicients). Numerical data of the impedance
functions have been computed for a wide range of values of the applied frequency to reveal
the influences of pore fluid and Poisson’s ratio of the solid skeleton. For the rocking
vibration case, the presence of the pore fluid significantly affects the magnitudes of the
impedance parameters (both magnitude and sign) while in the horizontal vibration case,
the presence of the pore fluid marginally influences the impedance response. It should be
emphasized that the solutions presented in this paper are applicable only to the completely
pervious surface condition. Other drainage conditions such as partially drained and com-
pletely undrained surface conditions are also important from the application viewpoint and
will be addressed in future studies.
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APPENDIX: ABBREVIATIONS

The following abbreviations are used in the paper :

2 ! 2 a2

HL3=5EQ[fbiw - ddey’ -] (A1)
d=K@*K-1) (A2)

o N

h= k (MKN K*7> (A3)
== AN Ad
(—(k )w+< /)) (Ad)
, ¢

Hi=— o (A3)

Vi ikp) ~ (Nif o)

@N-D+(-2*K)VIH]

(ioy tkp) + [N — (2N/H]w
Now

P A7
d (iy tkp) — (N Hw (A7)

5 j=1.2 (A6)



